118 research outputs found

    Type-Inference Based Short Cut Deforestation (nearly) without Inlining

    Get PDF
    Deforestation optimises a functional program by transforming it into another one that does not create certain intermediate data structures. In [ICFP'99] we presented a type-inference based deforestation algorithm which performs extensive inlining. However, across module boundaries only limited inlining is practically feasible. Furthermore, inlining is a non-trivial transformation which is therefore best implemented as a separate optimisation pass. To perform short cut deforestation (nearly) without inlining, Gill suggested to split definitions into workers and wrappers and inline only the small wrappers, which transfer the information needed for deforestation. We show that Gill's use of a function build limits deforestation and note that his reasons for using build do not apply to our approach. Hence we develop a more general worker/wrapper scheme without build. We give a type-inference based algorithm which splits definitions into workers and wrappers. Finally, we show that we can deforest more expressions with the worker/wrapper scheme than the algorithm with inlining

    A Reflection on Types

    Get PDF
    The ability to perform type tests at runtime blurs the line between statically-typed and dynamically-checked languages. Recent developments in Haskell’s type system allow even programs that use reflection to themselves be statically typed, using a type-indexed runtime representation of types called \{}\textit{TypeRep}. As a result we can build dynamic types as an ordinary, statically-typed library, on top of \{}\textit{TypeRep} in an open-world context

    Upregulation of Trem2 expression occurs exclusively on microglial contact with plaques

    Get PDF
    Using spatial cell-type-enriched transcriptomics, we compare plaque-induced gene (PIG) expression in microglia touching plaques, neighboring plaques, and far from plaques in 18-month-old APPNLF/NLF knock-in mice with and without the Alzheimer’s disease risk mutation Trem2R47H/R47H. We report that, in AppNLF/NLF mice, expression of 35/55 PIGs, is exclusively upregulated in microglia that are touching plaques. In 7 PIGs including Trem2 this upregulation is prevented by the Trem2R47H/R47H mutation. Unlike in young mice, knockin of the Trem2R47H/R47H mutation does not significantly decrease the Trem2 expression but decreases protein levels by 20% in the absence of plaques. On plaques, despite the mutation preventing increased gene expression, TREM2 protein levels increased by 1.6-fold (compared to 3-fold with Trem2WT/WT) and microglial density increased 20-fold compared to 30-fold. Hence microglia must touch plaques before Trem2 gene expression is increased but small changes in protein expression can increase microglia density without a change in gene expression

    The Best of Both Worlds:Linear Functional Programming without Compromise

    Get PDF
    We present a linear functional calculus with both the safety guarantees expressible with linear types and the rich language of combinators and composition provided by functional programming. Unlike previous combinations of linear typing and functional programming, we compromise neither the linear side (for example, our linear values are first-class citizens of the language) nor the functional side (for example, we do not require duplicate definitions of compositions for linear and unrestricted functions). To do so, we must generalize abstraction and application to encompass both linear and unrestricted functions. We capture the typing of the generalized constructs with a novel use of qualified types. Our system maintains the metatheoretic properties of the theory of qualified types, including principal types and decidable type inference. Finally, we give a formal basis for our claims of expressiveness, by showing that evaluation respects linearity, and that our language is a conservative extension of existing functional calculi.Comment: Extended versio

    Plaque contact and unimpaired Trem2 is required for the microglial response to amyloid pathology

    Get PDF
    Using spatial cell-type-enriched transcriptomics, we compare plaque-induced gene (PIG) expression in microglia-touching plaques, neighboring plaques, and far from plaques in an aged Alzheimer’s mouse model with late plaque development. In 18-month-old APPNL-F/NL-F knockin mice, with and without the Alzheimer’s disease risk mutation Trem2R47H/R47H, we report that expression of 38/55 PIGs have plaque-induced microglial upregulation, with a subset only upregulating in microglia directly contacting plaques. For seven PIGs, including Trem2, this upregulation is prevented in APPNL-F/NL-FTrem2R47H/R47H mice. These TREM2-dependent genes are all involved in phagocytic and degradative processes that we show correspond to a decrease in phagocytic markers and an increase in the density of small plaques in Trem2-mutated mice. Furthermore, despite the R47H mutation preventing increased Trem2 gene expression, TREM2 protein levels and microglial density are still marginally increased on plaques. Hence, both microglial contact with plaques and functioning TREM2 are necessary for microglia to respond appropriately to amyloid patholog

    Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.

    Get PDF
    Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification

    Role of Engrailed-2 (EN2) as a prostate cancer detection biomarker in genetically high risk men

    Get PDF
    Controversy surrounds the use of PSA as a biomarker for prostate cancer detection, leaving an unmet need for a novel biomarker in this setting; urinary EN2 may identify individuals with clinically relevant prostate cancer. Male BRCA1 and BRCA2 mutation carriers are at increased risk of clinically significant prostate cancer and may benefit from screening. Urine samples from 413 BRCA1 and BRCA2 mutation carriers and controls were evaluated. Subjects underwent annual PSA screening with diagnostic biopsy triggered by PSA > 3.0 ng/ml; 21 men were diagnosed with prostate cancer. Urinary EN2 levels were measured by ELISA and had a sensitivity of 66.7% and specificity of 89.3% for cancer detection. There was no statistically significant difference in EN2 levels according to genetic status or Gleason score. Urinary EN2 may be useful as a non-invasive early biomarker for prostate cancer detection in genetically high-risk individuals
    • 

    corecore